Dr Sepp Hochreiter

Founding Director

Dr Hochreiter is a pioneer in the field of Artificial Intelligence (AI). He was the first to identify the key obstacle to Deep Learning and then discovered a general approach to address this challenge. He thus became the founding father of modern Deep Learning and AI.

He is also a professor at Johannes Kepler University Linz.

Publications

2020

M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter (2020) Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. arXiv:2010.07921, 2020-10-15. (more) (download)

T. Adler, J. Brandstetter, M. Widrich, A. Mayr, D. Kreil, M. Kopp, G. Klambauer, and S. Hochreiter (2020) Cross-Domain Few-Shot Learning by Representation Fusion. arXiv:2010.06498, 2020-10-13. (more) (download)

V. P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-Medina, and S. Hochreiter (2020) Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution. arXiv:2009.14108, 2020-09-29. (more) (download)

D. P. Kreil, M. K. Kopp, D. Jonietz, M. Neun, A. Gruca, P. Herruzo, H. Martin, A. Soleymani, and S. Hochreiter (2020) The surprising efficiency of framing geo-spatial time series forecasting as a video prediction task – Insights from the IARAI Traffic4cast Competition at NeurIPS 2019. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR 123:232-241, 2020-08-19. (more) (download)

H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter (2020) Hopfield Networks is All You Need. arXiv:2008.02217, 2020-08-06. (more) (download)

M. Widrich, B. Schäfl, H. Ramsauer, M. Pavlović, L. Gruber, M. Holzleitner, J. Brandstetter, G. K. Sandve, V. Greiff, S. Hochreiter, and G. Klambauer (2020) Modern Hopfield Networks and Attention for Immune Repertoire Classification. arXiv:2007.13505, 2020-07-16. (more) (download)

A. Mitterecker, A. Hofmann, K. M. Trentino, A. Lloyd, M. F. Leahy, K. Schwarzbauer, T. Tschoellitsch, C. Böck, S. Hochreiter, and J. Meier (2020) Machine learning–based prediction of transfusion. Transfusion, 60:1977–1986. 2020-06-28. (more) (download)

F. Kratzert, D. Klotz, S. Hochreiter, and G. Nearing (2020) A note on leveraging synergy in multiple meteorological datasets with deep learning for rainfall-runoff modeling. EarthArXiv, 2020-05-06. (more) (download)

P. Renz, D. Van Rompaey, J. K. Wegner, S. Hochreiter, and G. Klambauer (2020) On failure modes of molecule generators and optimizers. ChemRxiv, 2020-04-30. (more) (download)

N. Sturm, A. Mayr, T. L. Van, V. Chupakhin, H. Ceulemans, J. Wegner, J.-F. Golib-Dzib, N. Jeliazkova, Y. Vandriessche, S. Böhm, V. Cima, J. Martinovic, N. Greene, T. V. Aa, T. J. Ashby, S. Hochreiter, O. Engkvist, G. Klambauer, and H. Chen (2020) Industry-scale application and evaluation of deep learning for drug target prediction. Journal of Cheminformatics, 12, 1-13, 2020-04-19. (more) (download)

M. Hofmarcher, A. Mayr, E. Rumetshofer, P. Ruch, P. Renz, J. Schimunek, P. Seidl, A. Vall, M. Widrich, S. Hochreiter, and G. Klambauer (2020) Large-Scale Ligand-Based Virtual Screening for SARS-CoV-2 Inhibitors Using Deep Neural Networks. SSRN 3561442, 2020-03-23. (more) (download)

A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter (2020) The LSC Benchmark Dataset: Technical Appendix and Partial Reanalysis. 2020-02-12. (more) (download)

2019

F. Kratzert, D. Klotz, M. Herrnegger, A. K. Sampson, S. Hochreiter, and G. S. Nearing (2019) Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research. 55, 12, 11344-11354. 2019-12-23. (more) (download)

F. Kratzert, D. Klotz, G. Klambauer, S. Hochreiter, and G. S. Nearing (2019) Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network. American Geophysical Union, AGU Fall Meeting 2019, San Francisco, 9-13 Dec. (more) (download)

F. Kratzert, D. Klotz, J. Brandstetter, P.-J. Hoedt, G. Nearing, and S. Hochreiter (2019) Using LSTMs for climate change assessment studies on droughts and floods. arXiv, 1911.03941v2, Machine Learning (cs.LG), 2019-11-28. (more) (download)

S. Kimeswenger, E. Rumetshofer, M. Hofmarcher, P. Tschandl, H. Kittler, S. Hochreiter, W. Hötzenecker, and G. Klambauer (2019) Detecting cutaneous basal cell carcinomas in ultra-high resolution and weakly labelled histopathological images. ML4H: Machine Learning for Health workshop at NeurIPS 2019, Vancouver, 10-12 Dec 2019, or preprint at arXiv, 1911.06616v3, Image and Video Processing (eess.IV), 2019-12-02. (more) (download)

T. Adler, M. Erhard, M. Krenn, J. Brandstetter, J. Kofler, and S. Hochreiter (2019) LSTM-Designed Quantum Experiments. Machine Learning and the Physical Sciences Workshop at NeurIPS 2019, Vancouver, 10-12 Dec 2019. (more) (download)

T. Adler, M. Erhard, M. Krenn, J. Brandstetter, J. Kofler, and S. Hochreiter (2019) Quantum Optical Experiments Modeled by Long Short-Term Memory. arXiv, 1910.13804v1, Machine Learning (cs.LG), 2019-10-30. (more) (download)

J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler, and S. Hochreiter (2019) Patch Refinement – Localized 3D Object Detection. Machine Learning for Autonomous Driving Workshop at NeurIPS 2019, Vancouver, 10-12 Dec 2019, or preprint arXiv, 1910.04093v1, Computer Vision and Pattern Recognition (cs.CV), 2019-10-09. (more) (download)

M. Gillhofer, H. Ramsauer, J. Brandstetter, and S. Hochreiter (2019) A GAN based solver of black-box inverse problems. openreview.net. (more) (download)

J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter (2019) RUDDER – Return Decomposition with Delayed Rewards. NeurIPS 2019, Vancouver, 10-12 Dec 2019, or pre-print on arXiv, 1806.07857v3, Machine Learning (cs.LG), 2019-09-10. (more) (download)

M. Hofmarcher, T. Unterthiner, J. Arjona-Medina, G. Klambauer, S. Hochreiter, and B. Nessler (2019) Visual scene understanding for autonomous driving using semantic segmentation. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, doi.org/10.1007/978-3-030-28954-6_15, 2019-09-10. (more) (download)

L. Arras, J. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer, K.-R. Müller, S. Hochreiter, and W. Samek (2019) Explaining and Interpreting LSTMs. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, doi.org/10.1007/978-3-030-28954-6_11, 2019-09-10. (more) (download)

F. Kratzert, D. Klotz, A. K. Sampson, S. Hochreiter, and G. Nearing (2019) Prediction in Ungauged Basins with Long Short-term Memory Networks. EarthArXiv. doi:10.31223/osf.io/4rysp, 2019-08-26. (more) (download)

F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing (2019) Benchmarking a Catchment-Aware Long Short-Term Memory Network (LSTM) for Large-Scale Hydrological Modeling. arXiv, 1907.08456v1, Machine Learning (cs.LG), 2019-07-19. (more) (download)

M. P. Menden et al. (2019) Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications 10, 2674. (more) (download)

F. Kratzert, D. Klotz, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Using large data sets towards generating a catchment aware hydrological model for global applications. Geophysical Research Abstracts, Vol. 21, EGU2019-13795. EGU General Assembly 2019. (more) (download)

D. Klotz, F. Kratzert, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Towards the quantification of uncertainty for deep learning based rainfall-runoff models. Geophysical Research Abstracts, Vol. 21, EGU2019-10708-2. EGU General Assembly 2019. (more) (download)

G. Klambauer, S. Hochreiter, and M. Rarey (2019) Machine Learning in Drug Discovery. J. Chem. Inf. Model. 59, 945−946. (more) (download)

F. Kratzert, M. Herrnegger, D. Klotz, S. Hochreiter, and G. Klambauer (2019) NeuralHydrology – Interpreting LSTMs in Hydrology. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, doi.org/10.1007/978-3-030-28954-6_19, see preprint at arXiv, 1903.07903v1, 2019-03-19. (more) (download)

K. Preuer, G. Klambauer, F. Rippmann, S. Hochreiter, and T. Unterthiner (2019) Interpretable Deep Learning in Drug Discovery. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, doi.org/10.1007/978-3-030-28954-6_18, see preprint at arXiv, 1903.02788v2, 2019-03-18. (more) (download)

M. Hofmarcher, E. Rumetshofer, D.-A. Clevert, S. Hochreiter, and G. Klambauer (2019) Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J. Chem. Inf. Model. 59, 3, 1163-1171. (more) (download)

Conferences

Full-day Traffic4cast Symposium

Everyone is welcome to attend the full-day IARAI Traffic4cast Symposion 15 Dec Sunday at the Fairmont Vancouver hotel. Symposium Registration is now open until Saturday 14 Dec 17h, or earlier as soon as...

Traffic4cast Competition Track at NeurIPS 2019

Every NeurIPS delegate is welcome to attend the Traffic4cast Competition Track session on 14 Dec Saturday from 3pm! The session is introduced by our very own Sepp Hochreiter and Leonid Sigal of the University...

Seminars

Machine Learning for Location Based Services

Prof.  Dr. Ioannis Giannopoulos is a Full Professor for Geoinformation at Vienna University of Technology (TU Wien). Before coming to Vienna, Ioannis was a Postdoctoral Researcher and Lecturer at...

Large Associative Memory Problem in Neurobiology and Machine Learning

Dmitry Krotov, PhD, is a research staff member at the MIT-IBM Watson AI Lab and IBM Research Center in Cambridge, MA. He received his PhD in Physics from Princeton...

Machine Learning in Remote Sensing and Climate Research

Prof. Dr. Wouter Dorigo is head of the research group Climate and Environmental Remote Sensing at TU Wien GEO. His main research interest is remote sensing of soil moisture...

Graph Based Machine Learning Methods for Human Mobility Analysis

Henry Martin is a PhD Student in Geoinformatics at the Chair of Geoinformation Engineering at ETH Zurich and at the Institute of Advanced Research in Artificial Intelligence (IARAI). Since...

Traffic4cast at NeurIPS 2019

Traffic4cast is an interdisciplinary competition on traffic prediction using machine learning, hosted by IARAI. Traffic4cast 2019 dataset includes industrial-scale real-world traffic data with over 100 billion points, provided by HERE Technologies. The...

©2020 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account