2021

A. Vall, Y. Sabnis, J. Shi, R. Class, S. Hochreiter, and G. Klambauer (2021) The Promise of AI for DILI Prediction. Frontiers in Artificial Intelligence, 4, 638410, 2021-04-14. (more) (download)

B. Rasti, B. Koirala, P. Scheunders, and P. Ghamisi (2021) UnDIP: Hyperspectral Unmixing Using Deep Image Prior. IEEE Transactions on Geoscience and Remote Sensing, 2021-03-31. (more) (download)

P. M. Winter, S. Eder, J. Weissenböck, C. Schwald, T. Doms, T. Vogt, S. Hochreiter, and B. Nessler (2021) Trusted Artificial Intelligence: Towards Certification of Machine Learning Applications. arXiv:2103.16910, 2021-03-31. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling. Hydrology and Earth System Sciences, under review, 2021-03-15. (more) (download)

M. Pavlovic, L. Scheffer, K. Motwani, C. Kanduri, R. Kompova, N. Vazov, K. Waagan, F. L. Bernal, A. A. Costa, B. Corrie, R. Akbar, G. S. Al Hajj, G. Balaban, T. M. Brusko, M. Chernigovskaya, S. Christley, L. G. Cowell, R. Frank, I. Grytten, S. Gundersen, I. H. Haff, S. Hochreiter, E. Hovig, P.-H. Hsieh, G. Klambauer, M. L. Kuijjer, C. Lund-Andersen, A. Martini, T. Minotto, J. Pensar, K. Rand, E. Riccardi, P. A. Robert, A. Rocha, A. Slabodkin, I. Snapkov, L. M. Sollid, D. Titov, C. R. Weber, M. Widrich, G. Yaari, V. Greiff, and G. K. Sandve (2021) immuneML: an Ecosystem for Machine Learning Analysis of Adaptive Immune Receptor Repertoires. bioRxiv, 2021-03-15. (more) (download)

C. Robinson, K. Malkin, N. Jojic, H. Chen, R. Qin, C. Xiao, M. Schmitt, P. Ghamisi, R. Hansch, and N. Yokoya (2021) Global Land Cover Mapping with Weak Supervision: Outcome of the 2020 IEEE GRSS Data Fusion Contest.  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021-03-04. (more) (download)

F. Kratzert, D. Klotz, M. Gauch, C. Klingler, G. Nearing, and S. Hochreiter (2021) Large-Scale River Network Modeling Using Graph Neural Networks. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13375, 2021-03-03. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, J. Brandstetter, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with LSTM Based Rainfall-Runoff Models. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13308, 2021-03-03. (more) (download)

J. Yue, L. Fang, H. Rahmani, and P. Ghamisi (2021) Self-Supervised Learning with Adaptive Distillation for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 1-13, 2021-02-22. (more) (download)

2020

S. Kimeswenger, P. Tschandl, P. Noack, M. Hofmarcher, E. Rumetshofer, H. Kindermann, R. Silye, S. Hochreiter, M. Kaltenbrunner, E. Guenova, G. Klambauer, and W. Hoetzenecker (2020) Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns. Modern Pathology, 1-9, 2020-11-13. (more) (download)

P. Renz, D. Van Rompaey, J. K. Wegner, S. Hochreiter, and G. Klambauer (2020) On failure modes in molecule generation and optimization. Drug Discovery Today: Technologies, 32, 55-63, 2020-10-24. (more) (download)

T. Adler, J. Brandstetter, M. Widrich, A. Mayr, D. Kreil, M. Kopp, G. Klambauer, and S. Hochreiter (2020) Cross-Domain Few-Shot Learning by Representation Fusion. arXiv:2010.06498, 2020-10-13. (more) (download)

D. P. Kreil, M. K. Kopp, D. Jonietz, M. Neun, A. Gruca, P. Herruzo, H. Martin, A. Soleymani, and S. Hochreiter (2020) The surprising efficiency of framing geo-spatial time series forecasting as a video prediction task – Insights from the IARAI Traffic4cast Competition at NeurIPS 2019. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR 123:232-241, 2020-08-19. (more) (download)

P. Herruzo & J. L. Larriba-Pey (2020) Recurrent Autoencoder with Skip Connections and Exogenous Variables for Traffic Forecasting. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR 123:47-55, 2020-08-19. (more) (download)

H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter (2020) Hopfield Networks is All You Need. arXiv:2008.02217, 2020-08-06. (more) (download)

M. Widrich, B. Schäfl, H. Ramsauer, M. Pavlović, L. Gruber, M. Holzleitner, J. Brandstetter, G. K. Sandve, V. Greiff, S. Hochreiter, and G. Klambauer (2020) Modern Hopfield Networks and Attention for Immune Repertoire Classification. arXiv:2007.13505, 2020-07-16. (more) (download)

M. M. Cutchan, S. Özdal‐Oktay, and I. Giannopoulos (2020) Semantic‐based urban growth prediction. Transactions in GIS. 00: 1– 22. 2020-07-14. (more) (download)

F. Kratzert, D. Klotz, S. Hochreiter, and G. Nearing (2020) A note on leveraging synergy in multiple meteorological datasets with deep learning for rainfall-runoff modeling. EarthArXiv, 2020-05-06. (more) (download)

N. Sturm, A. Mayr, T. L. Van, V. Chupakhin, H. Ceulemans, J. Wegner, J.-F. Golib-Dzib, N. Jeliazkova, Y. Vandriessche, S. Böhm, V. Cima, J. Martinovic, N. Greene, T. V. Aa, T. J. Ashby, S. Hochreiter, O. Engkvist, G. Klambauer, and H. Chen (2020) Industry-scale application and evaluation of deep learning for drug target prediction. Journal of Cheminformatics, 12, 1-13, 2020-04-19. (more) (download)

M. Hofmarcher, A. Mayr, E. Rumetshofer, P. Ruch, P. Renz, J. Schimunek, P. Seidl, A. Vall, M. Widrich, S. Hochreiter, and G. Klambauer (2020) Large-Scale Ligand-Based Virtual Screening for SARS-CoV-2 Inhibitors Using Deep Neural Networks. SSRN 3561442, 2020-03-23. (more) (download)

A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter (2020) The LSC Benchmark Dataset: Technical Appendix and Partial Reanalysis. 2020-02-12. (more) (download)

2019

F. Kratzert, D. Klotz, M. Herrnegger, A. K. Sampson, S. Hochreiter, and G. S. Nearing (2019) Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research. 55, 12, 11344-11354. 2019-12-23. (more) (download)

F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing (2019) Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 23, 12, 5089–5110, 2019-12-17. (more) (download)

F. Kratzert, D. Klotz, G. Klambauer, S. Hochreiter, and G. S. Nearing (2019) Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network. American Geophysical Union, AGU Fall Meeting 2019, San Francisco, 9-13 Dec. (more) (download)

©2021 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account