2021

M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter (2021) Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrology and Earth System Sciences, 25, 4, 2045-2062, 2021-04-19. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling. Hydrology and Earth System Sciences, under review, 2021-03-15. (more) (download)

F. Kratzert, D. Klotz, M. Gauch, C. Klingler, G. Nearing, and S. Hochreiter (2021) Large-Scale River Network Modeling Using Graph Neural Networks. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13375, 2021-03-03. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, J. Brandstetter, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with LSTM Based Rainfall-Runoff Models. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13308, 2021-03-03. (more) (download)

M. Gauch, F. Kratzert, G. Nearing, J. Lin, S. Hochreiter, J. Brandstetter, and D. Klotz (2021) Multi-Timescale LSTM for Rainfall–Runoff Forecasting. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9714, 2021-03-03. (more) (download)

P.-J. Hoedt, F. Kratzert, D. Klotz, C. Halmich, M. Holzleitner, G. Nearing, S. Hochreiter, and G. Klambauer (2021) MC-LSTM: Mass-Conserving LSTM. arXiv:2101.05186, 2021-01-13. (more) (download)

2020

F. Kratzert, D. Klotz, S. Hochreiter, and G. Nearing (2020) A note on leveraging synergy in multiple meteorological datasets with deep learning for rainfall-runoff modeling. EarthArXiv, 2020-05-06. (more) (download)

2019

F. Kratzert, D. Klotz, M. Herrnegger, A. K. Sampson, S. Hochreiter, and G. S. Nearing (2019) Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research. 55, 12, 11344-11354. 2019-12-23. (more) (download)

F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing (2019) Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 23, 12, 5089–5110, 2019-12-17. (more) (download)

F. Kratzert, D. Klotz, G. Klambauer, S. Hochreiter, and G. S. Nearing (2019) Large-Scale Rainfall-Runoff Modeling using the Long Short-Term Memory Network. American Geophysical Union, AGU Fall Meeting 2019, San Francisco, 9-13 Dec. (more) (download)

F. Kratzert, D. Klotz, J. Brandstetter, P.-J. Hoedt, G. Nearing, and S. Hochreiter (2019) Using LSTMs for climate change assessment studies on droughts and floods. arXiv, 1911.03941v2, Machine Learning (cs.LG), 2019-11-28. (more) (download)

T. Adler, M. Erhard, M. Krenn, J. Brandstetter, J. Kofler, and S. Hochreiter (2019) LSTM-Designed Quantum Experiments. Machine Learning and the Physical Sciences Workshop at NeurIPS 2019, Vancouver, 10-12 Dec 2019. (more) (download)

T. Adler, M. Erhard, M. Krenn, J. Brandstetter, J. Kofler, and S. Hochreiter (2019) Quantum Optical Experiments Modeled by Long Short-Term Memory. arXiv, 1910.13804v1, Machine Learning (cs.LG), 2019-10-30. (more) (download)

J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter (2019) RUDDER – Return Decomposition with Delayed Rewards. NeurIPS 2019, Vancouver, 10-12 Dec 2019, or pre-print on arXiv, 1806.07857v3, Machine Learning (cs.LG), 2019-09-10. (more) (download)

L. Arras, J. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer, K.-R. Müller, S. Hochreiter, and W. Samek (2019) Explaining and Interpreting LSTMs. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, doi.org/10.1007/978-3-030-28954-6_11, 2019-09-10. (more) (download)

F. Kratzert, D. Klotz, A. K. Sampson, S. Hochreiter, and G. Nearing (2019) Prediction in Ungauged Basins with Long Short-term Memory Networks. EarthArXiv. doi:10.31223/osf.io/4rysp, 2019-08-26. (more) (download)

F. Kratzert, D. Klotz, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Using large data sets towards generating a catchment aware hydrological model for global applications. Geophysical Research Abstracts, Vol. 21, EGU2019-13795. EGU General Assembly 2019. (more) (download)

D. Klotz, F. Kratzert, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Towards the quantification of uncertainty for deep learning based rainfall-runoff models. Geophysical Research Abstracts, Vol. 21, EGU2019-10708-2. EGU General Assembly 2019. (more) (download)

F. Kratzert, M. Herrnegger, D. Klotz, S. Hochreiter, and G. Klambauer (2019) NeuralHydrology – Interpreting LSTMs in Hydrology. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, doi.org/10.1007/978-3-030-28954-6_19, see preprint at arXiv, 1903.07903v1, 2019-03-19. (more) (download)

©2021 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account