2023

K. Schweighofer, L. Aichberger, M. Ielanskyi, G. Klambauer, and S. Hochreiter (2023) Quantification of Uncertainty with Adversarial Models. arXiv:2307.03217, 2023-07-06. (more) (download)

A. Auer, M. Gauch, D. Klotz, and S. Hochreiter (2023) Conformal Prediction for Time Series with Modern Hopfield Networks. arXiv:2303.12783, 2023-03-22. (more) (download)

D. Klotz, M. Gauch, G. Nearing, S. Hochreiter, and F. Kratzert (2023) The Persistence of Errors: How Evaluating Models over Data Partitions Relates to a Global Evaluation. EGU23-15221, 2023-02-22. (more) (download)

2022

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, J. Brandstetter, G. Klambauer, S. Hochreiter, and G. Nearing (2022) Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling. Hydrology and Earth System Sciences, 26, 6, 1673-1693, 2022-03-31. (more) (download)

2021

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, J. Brandstetter, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with LSTM Based Rainfall-Runoff Models. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13308, 2021-03-03. (more) (download)

©2023 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account