M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter (2021) Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrology and Earth System Sciences, 25, 4, 2045-2062, 2021-04-19. (more) (download)

A. Vall, Y. Sabnis, J. Shi, R. Class, S. Hochreiter, and G. Klambauer (2021) The Promise of AI for DILI Prediction. Frontiers in Artificial Intelligence, 4, 638410, 2021-04-14. (more) (download)

T. Roland, C. Boeck, T. Tschoellitsch, A. Maletzky, S. Hochreiter, J. Meier, and G. Klambauer (2021) Machine Learning Based COVID-19 Diagnosis from Blood Tests with Robustness to Domain Shifts. medRxiv, 2021-04-09. (more) (download)

P. Seidl, P. Renz, N. Dyubankova, P. Neves, J. Verhoeven, J. K. Wegner, S. Hochreiter, and G. Klambauer (2021) Modern Hopfield Networks for Few- and Zero-Shot Reaction Prediction. arXiv:2104.03279, 2021-04-07. (more) (download)

B. Rasti, B. Koirala, P. Scheunders, and P. Ghamisi (2021) UnDIP: Hyperspectral Unmixing Using Deep Image Prior. IEEE Transactions on Geoscience and Remote Sensing, 2021-03-31. (more) (download)

P. M. Winter, S. Eder, J. Weissenböck, C. Schwald, T. Doms, T. Vogt, S. Hochreiter, and B. Nessler (2021) Trusted Artificial Intelligence: Towards Certification of Machine Learning Applications. arXiv:2103.16910, 2021-03-31. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling. Hydrology and Earth System Sciences, under review, 2021-03-15. (more) (download)

M. Pavlovic, L. Scheffer, K. Motwani, C. Kanduri, R. Kompova, N. Vazov, K. Waagan, F. L. Bernal, A. A. Costa, B. Corrie, R. Akbar, G. S. Al Hajj, G. Balaban, T. M. Brusko, M. Chernigovskaya, S. Christley, L. G. Cowell, R. Frank, I. Grytten, S. Gundersen, I. H. Haff, S. Hochreiter, E. Hovig, P.-H. Hsieh, G. Klambauer, M. L. Kuijjer, C. Lund-Andersen, A. Martini, T. Minotto, J. Pensar, K. Rand, E. Riccardi, P. A. Robert, A. Rocha, A. Slabodkin, I. Snapkov, L. M. Sollid, D. Titov, C. R. Weber, M. Widrich, G. Yaari, V. Greiff, and G. K. Sandve (2021) immuneML: an Ecosystem for Machine Learning Analysis of Adaptive Immune Receptor Repertoires. bioRxiv, 2021-03-15. (more) (download)

X. He, Y. Chen, and P. Ghamisi (2021) Dual Graph Convolutional Network for Hyperspectral Image Classification with Limited Training Samples. IEEE Transactions on Geoscience and Remote Sensing, 2021-03-08. (more) (download)

N. Yokoya, P. Ghamisi, R. Hansch, C. Prieur, H. Malha, J. Chanussot, C. Robinson, K. Malkin, and N. Jojic (2021) 2021 Data Fusion Contest: Geospatial Artificial Intelligence for Social Good. IEEE Geoscience and Remote Sensing Magazine, 9, 1, 287-C3, 2021-03-05. (more) (download)

C. Robinson, K. Malkin, N. Jojic, H. Chen, R. Qin, C. Xiao, M. Schmitt, P. Ghamisi, R. Hansch, and N. Yokoya (2021) Global Land Cover Mapping with Weak Supervision: Outcome of the 2020 IEEE GRSS Data Fusion Contest.  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021-03-04. (more) (download)

F. Kratzert, D. Klotz, M. Gauch, C. Klingler, G. Nearing, and S. Hochreiter (2021) Large-Scale River Network Modeling Using Graph Neural Networks. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13375, 2021-03-03. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, J. Brandstetter, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with LSTM Based Rainfall-Runoff Models. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13308, 2021-03-03. (more) (download)

M. Gauch, F. Kratzert, G. Nearing, J. Lin, S. Hochreiter, J. Brandstetter, and D. Klotz (2021) Multi-Timescale LSTM for Rainfall–Runoff Forecasting. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9714, 2021-03-03. (more) (download)

J. Yue, L. Fang, H. Rahmani, and P. Ghamisi (2021) Self-Supervised Learning with Adaptive Distillation for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 1-13, 2021-02-22. (more) (download)

P.-J. Hoedt, F. Kratzert, D. Klotz, C. Halmich, M. Holzleitner, G. Nearing, S. Hochreiter, and G. Klambauer (2021) MC-LSTM: Mass-Conserving LSTM. arXiv:2101.05186, 2021-01-13. (more) (download)


M. Gauch, D. Klotz, F. Kratzert, G. Nearing, S. Hochreiter, and a. J. Lin (2020) A Machine Learner’s Guide to Streamflow Prediction. NeurIPS Workshop: AI for Earth Sciences, 2020-12-12. (more) (download)

M. Holzleitner, L. Gruber, J. Arjona-Medina, J. Brandstetter, and S. Hochreiter (2020) Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER. arXiv:2012.01399, 2020-12-02. (more) (download)

L. Servadei, J. Zheng, J. Arjona-Medina, M. Werner, V. Esen, S. Hochreiter, W. Ecker, and R. Wille (2020) Cost Optimization at Early Stages of Design Using Deep Reinforcement Learning. Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, 37-42, 2020-11-16. (more) (download)

S. Kimeswenger, P. Tschandl, P. Noack, M. Hofmarcher, E. Rumetshofer, H. Kindermann, R. Silye, S. Hochreiter, M. Kaltenbrunner, E. Guenova, G. Klambauer, and W. Hoetzenecker (2020) Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns. Modern Pathology, 1-9, 2020-11-13. (more) (download)

P. Renz, D. Van Rompaey, J. K. Wegner, S. Hochreiter, and G. Klambauer (2020) On failure modes in molecule generation and optimization. Drug Discovery Today: Technologies, 32, 55-63, 2020-10-24. (more) (download)

T. Adler, J. Brandstetter, M. Widrich, A. Mayr, D. Kreil, M. Kopp, G. Klambauer, and S. Hochreiter (2020) Cross-Domain Few-Shot Learning by Representation Fusion. arXiv:2010.06498, 2020-10-13. (more) (download)

V. P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-Medina, and S. Hochreiter (2020) Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution. arXiv:2009.14108, 2020-09-29. (more) (download)

D. P. Kreil, M. K. Kopp, D. Jonietz, M. Neun, A. Gruca, P. Herruzo, H. Martin, A. Soleymani, and S. Hochreiter (2020) The surprising efficiency of framing geo-spatial time series forecasting as a video prediction task – Insights from the IARAI Traffic4cast Competition at NeurIPS 2019. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR 123:232-241, 2020-08-19. (more) (download)


Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)

Log in with your credentials

Forgot your details?

Create Account