Yonghao Xu & Pedram Ghamisi

Illustration of the method.

An illustration of the proposed consistency-regularized region-growing network (CRGNet).

Deep learning algorithms have obtained great success in semantic segmentation of very high-resolution (VHR) images. Nevertheless, training these models generally requires a large amount of accurate pixel-wise annotations, which is very laborious and time-consuming to collect. To reduce the annotation burden, this paper proposes a consistency-regularized region-growing network (CRGNet) to achieve semantic segmentation of VHR images with point-level annotations. The key idea of CRGNet is to iteratively select unlabeled pixels with high confidence to expand the annotated area from the original sparse points. However, since there may exist some errors and noises in the expanded annotations, directly learning from them may mislead the training of the network. To this end, we further propose the consistency regularization strategy, where a base classifier and an expanded classifier are employed. Specifically, the base classifier is supervised by the original sparse annotations, while the expanded classifier aims to learn from the expanded annotations generated by the base classifier with the region-growing mechanism. The consistency regularization is thereby achieved by minimizing the discrepancy between the predictions from both the base and the expanded classifiers. We find such a simple regularization strategy is yet very useful to control the quality of the region-growing mechanism. Extensive experiments on two benchmark datasets demonstrate that the proposed CRGNet significantly outperforms the existing state-of-the-art methods. Codes and pre-trained models are available on GitHub.

IEEE Transactions on Image Processing, 2022-07-25.

Download
View paper
IARAI Authors
Yonghao Xu, Dr. Pedram Ghamisi
Research
Algorithms
Keywords
Convolutional Neural Network, Deep Learning, Remote Sensing, Semantic Segmentation, Sparse Annotation, Very High-Resolution Images, Weak Supervision

©2022 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account