Linshan Wu, Leyuan Fang, Jun Yue, Bob Zhang, Pedram Ghamisi, and Min He

Issues addressed by the proposed method.

Issues addressed by the proposed method.

Semantic segmentation methods based on deep neural networks have achieved great success in recent years. However, training such deep neural networks relies heavily on a large number of images with accurate pixel-level labels, which requires a huge amount of human effort, especially for large-scale remote sensing images. In this paper, we propose a point-based weakly supervised learning framework called the deep bilateral filtering network (DBFNet) for the semantic segmentation of remote sensing images. Compared with pixel-level labels, point annotations are usually sparse and cannot reveal the complete structure of the objects; they also lack boundary information, thus resulting in incomplete prediction within the object and the loss of object boundaries. To address these problems, we incorporate the bilateral filtering technique into deeply learned representations in two respects. First, since a target object contains smooth regions that always belong to the same category, we perform deep bilateral filtering (DBF) to filter the deep features by a nonlinear combination of nearby feature values, which encourages the nearby and similar features to become closer, thus achieving a consistent prediction in the smooth region. In addition, the DBF can distinguish the boundary by enlarging the distance between the features on different sides of the edge, thus preserving the boundary information well. Experimental results on two widely used datasets, the ISPRS 2-D semantic labeling Potsdam and Vaihingen datasets, demonstrate that our proposed DBFNet can achieve a highly competitive performance compared with state-of-the-art fully-supervised methods. The code is available on GitHub.

IEEE Transactions on Image Processing, 31, 7419-7434, 2022-11-23.

Download
View paper
IARAI Authors
Dr. Pedram Ghamisi
Research
Algorithms, Remote Sensing
Keywords
Bilateral Filter, Deep Learning, Point Annotations, Remote Sensing, Semantic Segmentation, Weak Supervision

©2023 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account