Henry Martin, Dominik Bucher, Ye Hong, René Buffat, Christian Rupprecht, and Martin Raubal

The 2019 IARAI traffic4cast competition is a traffic forecasting problem based on traffic data from three cities that are encoded as images. We developed a ResNet-inspired graph convolutional neural network (GCN) approach that uses street network-based subgraphs of the image lattice graphs as a prior. We train the Graph-ResNet together with GCN and convolutional neural network (CNN) benchmark models on Moscow traffic data and use them to first predict the traffic in Moscow and then to predict the traffic in Berlin and Istanbul. The results suggest that the graph-based models have superior generalization properties than CNN-based models for this application. We argue that in contrast to purely image-based approaches, formulating the prediction problem on a graph allows the neural network to learn properties given by the underlying street network. This facilitates the transfer of a learned network to predict the traffic status at unknown locations.

Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR 123:153-163, 2020-08-19

Download
View paper
IARAI Authors
Henry Martin
Research
Traffic and Navigation
Keywords
Traffic Prediction, Traffic4cast

©2020 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account