Ali Rezaei Barzani, Parham Pahlavani, Omid Ghorbanzadeh, and Pedram Ghamisi

Flowchart of the proposed method

A flowchart of the proposed method for wildfire susceptibility prediction.

This study aims to identify key fire factors via recursive feature elimination (RFE) to generate a forest fire susceptibility map (FSM) using support vector machine (SVM), and random forest (RF) models. The fire zones were derived from MODIS satellite imagery from 2012 to 2017. Further validation of these data has been provided by field surveys and reviews of land records in rangelands and forests; a total of 352 fire points were determined in this study. Seventeen factors involving topography, geomorphology, meteorology, hydrology, and anthropology were identified as being effective primary factors in triggering and spreading fires in the selected mountainous case study area. As a first step, the RFE models of the RF, Extra trees, Gradient boosting, and AdaBoost was used to identify important fire factors among all selected primary factors. The SVM and RF models were applied once on all factors and the second on those derived from RFE models as the key factors in FSM. Training and testing data were divided tenfold, and the model’s performance was evaluated using cross-validation (CV). Different metrics were used to measure accuracy, including recall, precision, F1, accuracy, the area under the curve (AUC), Matthews correlation coefficient (MCC), and Kappa. The accuracy assessment process shows that the FSM results are further improved by leveraging RFE models to distinguish the key factors and not include unnecessary factors. The greatest improvement is for SVM, with more than 10.97 % and 8.61 % in the accuracy and AUC metrics, respectively.

EGUsphere, 2023-01-10.

Download
View paper
IARAI Authors
Omid Ghorbanzadeh, Dr. Pedram Ghamisi
Research
Earth Observation
Keywords
Random Forest, Remote Sensing, Support Vector Machines, Wildfires

©2023 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account