Kevin M Trentino, Karin Schwarzbauer, Andreas Mitterecker, Axel Hofmann, Adam Lloyd, Michael F Leahy, Thomas Tschoellitsch, Carl Böck, Sepp Hochreiter, and Jens Meier


The ability to predict in-hospital mortality from data available at hospital admission would identify patients at risk and thereby assist hospital-wide patient safety initiatives. Our aim was to use modern machine learning tools to predict in-hospital mortality from standardized data sets available at hospital admission.


This was a retrospective, observational study in 3 adult tertiary care hospitals in Western Australia between January 2008 and June 2017. Primary outcome measures were the area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the 4 machine learning algorithms used: logistic regression, neural networks, random forests, and gradient boosting trees.


Using our 4 predictive models, in-hospital mortality could be predicted satisfactorily (areas under the curve for neural networks, logistic regression, random forests, and gradient boosting trees: 0.932, 0.936, 0.935, and 0.935, respectively), with moderate F1 scores: 0.378, 0.367, 0.380, and 0.380, respectively. Average precision values were 0.312, 0.321, 0.334, and 0.323, respectively. It remains unknown whether additional features might improve our models; however, this would result in additional efforts for data acquisition in daily clinical practice.


This study demonstrates that using only a limited, standardized data set in-hospital mortality can be predicted satisfactorily at the time point of hospital admission. More parameters describing patient’s health are likely needed to improve our model.

Journal of Patient Safety, 2022-01-12.

View paper
IARAI Authors
Dr Sepp Hochreiter
Health and Well-being
Gradient Boosting, In-Hospital Mortality, Logistic Regression, Machine Learning, Patient Safety, Random Forest


Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)

Log in with your credentials

Forgot your details?

Create Account