Ming Lu, Leyuan Fang, Muxing Li, Bob Zhang, Yi Zhang, and Pedram Ghamisi

The proposed framework.

The proposed weakly supervised water-body extraction framework; (a) represents the recursive training process, and (b) is the proposed NFANet.

The use of deep learning for water extraction requires precise pixel-level labels. However, it is very difficult to label high-resolution remote sensing images at the pixel level. Therefore, we study how to utilize point labels to extract water bodies and propose a novel method called the neighbor feature aggregation network (NFANet). Compared with pixellevel labels, point labels are much easier to obtain, but they will lose much information. In this paper, we take advantage of the similarity between the adjacent pixels of a local water-body, and propose a neighbor sampler to resample remote sensing images. Then, the sampled images are sent to the network for feature aggregation. In addition, we use an improved recursive training algorithm to further improve the extraction accuracy, making the water boundary more natural. Furthermore, our method utilizes neighboring features instead of global or local features to learn more representative features. The experimental results show that the proposed NFANet method not only outperforms other studied weakly supervised approaches, but also obtains similar results as the state-of-the-art ones.

IEEE Transactions on Geoscience and Remote Sensing, 2022-01-04.

Download
View paper
IARAI Authors
Dr. Pedram Ghamisi
Research
Remote Sensing
Keywords
Convolutional Neural Networks, Deep Learning, Semantic Segmentation, Weak Supervision

©2022 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

Select list(s)

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account