2019

M. Gillhofer, H. Ramsauer, J. Brandstetter, and S. Hochreiter (2019) A GAN based solver of black-box inverse problems. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); e-print at openreview.net. (more) (download)

J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter (2019) RUDDER – Return Decomposition with Delayed Rewards. Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 13566;  e-print also at arXiv:1806.07857v3, 2019-09-10. (more) (download)

M. Hofmarcher, T. Unterthiner, J. Arjona-Medina, G. Klambauer, S. Hochreiter, and B. Nessler (2019) Visual scene understanding for autonomous driving using semantic segmentation. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 285, 2019-09-10. (more) (download)

L. Arras, J. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer, K.-R. Müller, S. Hochreiter, and W. Samek (2019) Explaining and Interpreting LSTMs. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 211, 2019-09-10; preprint at arXiv:1909.12114. (more) (download)

K. Preuer, G. Klambauer, F. Rippmann, S. Hochreiter, and T. Unterthiner (2019) Interpretable Deep Learning in Drug Discovery. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 331, 2019-09-10; preprint at arXiv, 1903.02788v2. (more) (download)

F. Kratzert, M. Herrnegger, D. Klotz, S. Hochreiter, and G. Klambauer (2019) NeuralHydrology – Interpreting LSTMs in Hydrology. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 347, 2019-09-10; preprint at arXiv:1903.07903v2. (more) (download)

D. Jonietz & M. Kopp (2019) Towards Modeling Geographical Processes with Generative Adversarial Networks (GANs). 14th International Conference on Spatial Information Theory (COSIT 2019), Leibniz International Proceedings in Informatics (LIPIcs), 142, 27, 2019-09-03. (more) (download)

F. Kratzert, D. Klotz, A. K. Sampson, S. Hochreiter, and G. Nearing (2019) Prediction in Ungauged Basins with Long Short-term Memory Networks. EarthArXiv. doi:10.31223/osf.io/4rysp, 2019-08-26. (more) (download)

M. P. Menden, D. Wang, M. J. Mason, B. Szalai, K. C. Bulusu, Y. Guan, T. Yu, J. Kang, M. Jeon, R. Wolfinger, T. Nguyen, M. Zaslavskiy, A.-S. D. C. D. Consortium, I. S. Jang, Z. Ghazoui, M. E. Ahsen, R. Vogel, E. C. Neto, T. Norman, E. K. Y. Tang, M. J. Garnett, G. Y. Di Veroli, S. Fawell, G. Stolovitzky, J. Guinney, J. R. Dry, and J. Saez-Rodriguez (2019) Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications, 10, 2674, 2019-06-17. (more) (download)

F. Kratzert, D. Klotz, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Using large data sets towards generating a catchment aware hydrological model for global applications. Geophysical Research Abstracts, Vol. 21, EGU2019-13795. EGU General Assembly 2019. (more) (download)

D. Klotz, F. Kratzert, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Towards the quantification of uncertainty for deep learning based rainfall-runoff models. Geophysical Research Abstracts, Vol. 21, EGU2019-10708-2. EGU General Assembly 2019. (more) (download)

G. Klambauer, S. Hochreiter, and M. Rarey (2019) Machine Learning in Drug Discovery. Journal of Chemical Information and Modeling , 59, 3, 945, 2019-03-25. (more) (download)

M. Hofmarcher, E. Rumetshofer, D.-A. Clevert, S. Hochreiter, and G. Klambauer (2019) Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. Journal of Chemical Information and Modeling, 59, 3, 1163, 2019-03-06. (more) (download)

E. Rumetshofer, M. Hofmarcher, C. Röhrl, S. Hochreiter, and G. Klambauer (2019) Human-level Protein Localization with Convolutional Neural Networks. International Conference on Learning Representations, ICLR 2019, New Orleans, 6-9 May. (more) (download)

©2023 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account