Yonghao Xu, Bo Du, and Liangpei Zhang

Illustration of the method

An illustration of the proposed self-ensembling network.

Recent research has shown the great potential of deep learning algorithms in the hyperspectral image (HSI) classification task. Nevertheless, training these models usually requires a large amount of labeled data. Since the collection of pixel-level annotations for HSI is laborious and time-consuming, developing algorithms that can yield good performance in the small sample size situation is of great significance. In this study, we propose a robust self-ensembling network (RSEN) to address this problem. The proposed RSEN consists of two subnetworks including a base network and an ensemble network. With the constraint of both the supervised loss from the labeled data and the unsupervised loss from the unlabeled data, the base network and the ensemble network can learn from each other, achieving the self-ensembling mechanism. To the best of our knowledge, the proposed method is the first attempt to introduce the self-ensembling technique into the HSI classification task, which provides a different view on how to utilize the unlabeled data in HSI to assist the network training. We further propose a novel consistency filter to increase the robustness of self-ensembling learning. Extensive experiments on three benchmark HSI datasets demonstrate that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.

IEEE Transactions on Neural Networks and Learning Systems, 2022-08-19.

Download
View paper
IARAI Authors
Yonghao Xu
Research
Algorithms, Remote Sensing
Keywords
Convolutional Neural Network, Deep Learning, Hyperspectral Image, Image Classification, Remote Sensing, Self-Ensembling

©2023 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

Forgot your details?

Create Account