Yonghao Xu, Fengxiang He, Bo Du, Dacheng Tao, and Liangpei Zhang

Illustration of the method

An overview of the proposed self-ensembling generative adversarial network.

Deep neural networks (DNNs) have greatly contributed to the performance gains in semantic segmentation. Nevertheless, training DNNs generally requires large amounts of pixel-level labeled data, which is expensive and time-consuming to collect in practice. To mitigate the annotation burden, this paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation. In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN. Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model, the latter of which is a common barrier shared by most adversarial training-based methods. We theoretically analyze SE-GAN and provide an O(1/√N) generalization bound ( N is the training sample size), which suggests controlling the discriminator’s hypothesis complexity to enhance the generalizability. Accordingly, we choose a simple network as the discriminator. Extensive and systematic experiments in two standard settings demonstrate that the proposed method significantly outperforms current state-of-the-art approaches. The source code of our model is available on GitHub.

IEEE Transactions on Multimedia, 2022-12-29.

View paper
IARAI Authors
Yonghao Xu
Generative Adversarial Networks
Deep Generative Models, Generative Adversarial Networks, Self-Ensembling, Semantic Segmentation


Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)

Log in with your credentials

Forgot your details?

Create Account