Samiran Das, Sawon Pratiher, Chirag Kyal, and Pedram Ghamisi

Overview of the method

Schematic representation of the proposed method.

Hyperspectral images provide rich spectral information corresponding to visible and Near-infrared imaging (NIR) regions, facilitating accurate classification, object identification, and target detection. However, the high volume of data creates a computational challenge in processing. The band selection process identifies specific informative and discriminative spectral bands from the data to speed up the processing without impeding the performance. This paper presents an application-independent band selection framework that utilizes improved sparse deep subspace clustering and introduces an efficient multicriteria-based representative band selection. The proposed sparse deep subspace clustering approach efficiently identifies the underlying non-linear subspace structure of the data and organizes the data accordingly. The work introduces a novel, robust sparsity measure to obtain a powerful self-representation and ameliorated performance compared to the prevalent subspace clustering methods. The work subsequently selects the representative bands from each cluster by combining structural information of the band images with the statistical similarity measure. We evaluate the band selection performance on standard real images using information-theoretic criterion, classification, and unmixing performance. The comparative performance assessment demonstrates that our proposed method identifies the informative bands and outperforms the other approaches in terms of the subsequent tasks.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022-05-03.

View paper
IARAI Authors
Dr. Pedram Ghamisi
Algorithms, Remote Sensing
Band Selection, Hyperspectral Image, Remote Sensing, Sparsity Regularization, Subspace Clustering


Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)

Log in with your credentials

Forgot your details?

Create Account