Yonghao Xu & Pedram Ghamisi

Illustration of the method.

Illustration of the proposed black-box adversarial attack method.

Deep neural networks have achieved great success in many important remote sensing tasks. Nevertheless, their vulnerability to adversarial examples should not be neglected. In this study, we systematically analyze the universal adversarial examples in remote sensing data for the first time, without any knowledge from the victim model. Specifically, we propose a novel black-box adversarial attack method, namely Mixup-Attack, and its simple variant Mixcut-Attack, for remote sensing data. The key idea of the proposed methods is to find common vulnerabilities among different networks by attacking the features in the shallow layer of a given surrogate model. Despite their simplicity, the proposed methods can generate transferable adversarial examples that deceive most of the state-of-the-art deep neural networks in both scene classification and semantic segmentation tasks with high success rates. We further provide the generated universal adversarial examples in the dataset named UAE-RS, which is the first dataset that provides black-box adversarial samples in the remote sensing field. We hope UAE-RS may serve as a benchmark that helps researchers to design deep neural networks with strong resistance toward adversarial attacks in the remote sensing field. Codes and the UAE-RS dataset are available online.

arXiv:2202.07054, 2022-02-14.

View paper
IARAI Authors
Yonghao Xu, Dr. Pedram Ghamisi
Algorithms, Remote Sensing
Adversarial Attack, Adversarial Example, Benchmark Dataset, Remote Sensing, Scene Classification, Semantic Segmentation


Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)

Log in with your credentials

Forgot your details?

Create Account