Publications

2021

Z. Zhang, Y. Cai, W. Gong, P. Ghamisi, X. Liu, and R. Gloaguen (2021) Hypergraph Convolutional Subspace Clustering with Multi-hop Aggregation for Hyperspectral Image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021-12-21. (more) (download)

Y. Cai, Z. Zhang, Z. Cai, X. Liu, Y. Ding, and P. Ghamisi (2021) Fully Linear Graph Convolutional Networks for Semi-Supervised Learning and Clustering. arXiv:2111.07942, 2021-11-15. (more) (download)

A. Fürst, E. Rumetshofer, V. Tran, H. Ramsauer, F. Tang, J. Lehner, D. Kreil, M. Kopp, G. Klambauer, A. Bitto-Nemling, and S. Hochreiter (2021) CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP. arXiv:2110.11316, 2021-10-21. (more) (download)

M. Franke, H. Martin, S. Koch, and K. Kurzhals (2021) Visual Analysis of Spatio-Temporal Phenomena with 1D Projections. Eurographics Conference on Visualization (EuroVis), 40, 3, 2021-06-17. (more) (download)

F. Tang & M. Kopp (2021) A Remark on a Paper of Krotov and Hopfield. arXiv:2105.15034, 2021-06-03. (more) (download)

F. Kratzert, M. Gauch, G. Nearing, S. Hochreiter, and D. Klotz (2021) Rainfall-Runoff Modeling with Long Short-Term Memory Networks (LSTM)—an Overview. Österreichische Wasser-und Abfallwirtschaft, 2021-05-17. (more) (download)

M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter (2021) Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrology and Earth System Sciences, 25, 4, 2045-2062, 2021-04-19. (more) (download)

P. Seidl, P. Renz, N. Dyubankova, P. Neves, J. Verhoeven, J. K. Wegner, S. Hochreiter, and G. Klambauer (2021) Modern Hopfield Networks for Few- and Zero-Shot Reaction Prediction. arXiv:2104.03279, 2021-04-07. (more) (download)

P. M. Winter, S. Eder, J. Weissenböck, C. Schwald, T. Doms, T. Vogt, S. Hochreiter, and B. Nessler (2021) Trusted Artificial Intelligence: Towards Certification of Machine Learning Applications. arXiv:2103.16910, 2021-03-31. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling. Hydrology and Earth System Sciences, under review, 2021-03-15. (more) (download)

D. Klotz, F. Kratzert, M. Gauch, A. K. Sampson, G. Klambauer, J. Brandstetter, S. Hochreiter, and G. Nearing (2021) Uncertainty Estimation with LSTM Based Rainfall-Runoff Models. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13308, 2021-03-03. (more) (download)

P.-J. Hoedt, F. Kratzert, D. Klotz, C. Halmich, M. Holzleitner, G. Nearing, S. Hochreiter, and G. Klambauer (2021) MC-LSTM: Mass-Conserving LSTM. arXiv:2101.05186, 2021-01-13. (more) (download)

2020

T. Adler, J. Brandstetter, M. Widrich, A. Mayr, D. Kreil, M. Kopp, G. Klambauer, and S. Hochreiter (2020) Cross-Domain Few-Shot Learning by Representation Fusion. arXiv:2010.06498, 2020-10-13. (more) (download)

H. Martin, D. Bucher, Y. Hong, R. Buffat, C. Rupprecht, and M. Raubal (2020) Graph-ResNets for short-term traffic forecasts in almost unknown cities. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR 123:153-163, 2020-08-19. (more) (download)

H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter (2020) Hopfield Networks is All You Need. arXiv:2008.02217, 2020-08-06. (more) (download)

M. Widrich, B. Schäfl, H. Ramsauer, M. Pavlović, L. Gruber, M. Holzleitner, J. Brandstetter, G. K. Sandve, V. Greiff, S. Hochreiter, and G. Klambauer (2020) Modern Hopfield Networks and Attention for Immune Repertoire Classification. arXiv:2007.13505, 2020-07-16. (more) (download)

2019

M. Hofmarcher, T. Unterthiner, J. Arjona-Medina, G. Klambauer, S. Hochreiter, and B. Nessler (2019) Visual scene understanding for autonomous driving using semantic segmentation. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 285, 2019-09-10. (more) (download)

L. Arras, J. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer, K.-R. Müller, S. Hochreiter, and W. Samek (2019) Explaining and Interpreting LSTMs. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 211, 2019-09-10; preprint at arXiv:1909.12114. (more) (download)

K. Preuer, G. Klambauer, F. Rippmann, S. Hochreiter, and T. Unterthiner (2019) Interpretable Deep Learning in Drug Discovery. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 331, 2019-09-10; preprint at arXiv, 1903.02788v2. (more) (download)

F. Kratzert, M. Herrnegger, D. Klotz, S. Hochreiter, and G. Klambauer (2019) NeuralHydrology – Interpreting LSTMs in Hydrology. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer, 347, 2019-09-10; preprint at arXiv:1903.07903v2. (more) (download)

D. Klotz, F. Kratzert, M. Herrnegger, S. Hochreiter, and G. Klambauer (2019) Towards the quantification of uncertainty for deep learning based rainfall-runoff models. Geophysical Research Abstracts, Vol. 21, EGU2019-10708-2. EGU General Assembly 2019. (more) (download)

©2022 IARAI - INSTITUTE OF ADVANCED RESEARCH IN ARTIFICIAL INTELLIGENCE

Imprint | Privacy Policy

Stay in the know with developments at IARAI

Select list(s)

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)
Loading

Log in with your credentials

or    

Forgot your details?

Create Account