T. Schmied, M. Hofmarcher, F. Paischer, R. Pascanu, and S. Hochreiter (2023) Learning to Modulate Pre-trained Models in RL. arXiv:2306.14884, 2023-06-26. (more) (download)

F. Paischer, T. Adler, M. Hofmarcher, and S. Hochreiter (2023) Semantic HELM: An Interpretable Memory for Reinforcement Learning. arXiv:2306.09312, 2023-06-15. (more) (download)

K. Tertikas, P. Despoina, B. Pan, J. J. Park, M. A. Uy, I. Emiris, Y. Avrithis, and L. Guibas (2023) PartNeRF: Generating Part-Aware Editable 3D Shapes without 3D Supervision. arXiv:2303.09554, 2023-03-16. (more) (download)


Y. Xu, F. He, B. Du, D. Tao, and L. Zhang (2022) Self-Ensembling GAN for Cross-Domain Semantic Segmentation. IEEE Transactions on Multimedia, 2022-12-29. (more) (download)

R. Siripurapu, V. P. Patil, K. Schweighofer, M.-C. Dinu, T. Schmied, L. E. F. Diez, M. Holzleitner, H. Eghbal-Zadeh, M. K. Kopp, and S. Hochreiter (2022) InfODist: Online Distillation with Informative Rewards Improves Generalization in Curriculum Learning. Deep Reinforcement Learning Workshop at NeurIPS 2022, 2022-12-09. (more) (download)

K. Schweighofer, M.-c. Dinu, A. Radler, M. Hofmarcher, V. P. Patil, A. Bitto-Nemling, H. Eghbal-zadeh, and S. Hochreiter (2022) A Dataset Perspective on Offline Reinforcement Learning. Conference on Lifelong Learning Agents, Proceedings of Machine Learning Research, 199, 470-517, 2022-11-28. (more) (download)

C. Steinparz, T. Schmied, F. Paischer, M.-C. Dinu, V. Patil, A. Bitto-Nemling, H. Eghbal-zadeh, and S. Hochreiter (2022) Reactive Exploration to Cope with Non-Stationarity in Lifelong Reinforcement Learning. Proceedings of The 1st Conference on Lifelong Learning Agents, PMLR, 199, 441-469, 2022, 2022-11-28. (more) (download)

Z. He, K. Xia, P. Ghamisi, Y. Hu, S. Fan, and B. Zu (2022) HyperViTGAN: Semisupervised Generative Adversarial Network With Transformer for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 6053-6068, 2022-07-18. (more) (download)

F. Paischer, T. Adler, V. Patil, A. Bitto-Nemling, M. Holzleitner, S. Lehner, H. Eghbal-zadeh, and S. Hochreiter (2022) History Compression via Language Models in Reinforcement Learning. Proceedings of the 39th International Conference on Machine Learning, PMLR, 162, 17156-17185, 2022-06-28. (more) (download)

L. Servadei, J. H. Lee, J. A. A. Medina, M. Werner, S. Hochreiter, W. Ecker, and R. Wille (2022) Deep Reinforcement Learning for Optimization at Early Design Stages. IEEE Design & Test, 2022-01-20. (more) (download)


K. Schweighofer, M. Hofmarcher, M.-C. Dinu, P. Renz, A. Bitto-Nemling, V. Patil, and S. Hochreiter (2021) Understanding the Effects of Dataset Characteristics on Offline Reinforcement Learning. arXiv:2111.04714, 2021-11-08. (more) (download)

D. Flam-Shepherd, T. Wu, X. Gu, A. Cervera-Lierta, M. Krenn, and A. Aspuru-Guzik (2021) Learning Interpretable Representations of Entanglement in Quantum Optics Experiments using Deep Generative Models. arXiv:2109.02490, 2021-09-06. (more) (download)

C. Shen, M. Krenn, S. Eppel, and A. Aspuru-Guzik (2021) Deep Molecular Dreaming: Inverse Machine Learning for De-novo Molecular Design and Interpretability with Surjective Representations. Machine Learning: Science and Technology, 2, 3, 03LT02, 2021-07-13. (more) (download)


M. Holzleitner, L. Gruber, J. Arjona-Medina, J. Brandstetter, and S. Hochreiter (2020) Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER. arXiv:2012.01399, 2020-12-02. (more) (download)

L. Servadei, J. Zheng, J. Arjona-Medina, M. Werner, V. Esen, S. Hochreiter, W. Ecker, and R. Wille (2020) Cost Optimization at Early Stages of Design Using Deep Reinforcement Learning. Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, 37-42, 2020-11-16. (more) (download)

P. Renz, D. Van Rompaey, J. K. Wegner, S. Hochreiter, and G. Klambauer (2020) On failure modes in molecule generation and optimization. Drug Discovery Today: Technologies, 32, 55-63, 2020-10-24. (more) (download)

V. P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-Medina, and S. Hochreiter (2020) Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution. arXiv:2009.14108, 2020-09-29. (more) (download)


M. Gillhofer, H. Ramsauer, J. Brandstetter, and S. Hochreiter (2019) A GAN based solver of black-box inverse problems. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); e-print at (more) (download)

J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter (2019) RUDDER – Return Decomposition with Delayed Rewards. Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 13566;  e-print also at arXiv:1806.07857v3, 2019-09-10. (more) (download)

D. Jonietz & M. Kopp (2019) Towards Modeling Geographical Processes with Generative Adversarial Networks (GANs). 14th International Conference on Spatial Information Theory (COSIT 2019), Leibniz International Proceedings in Informatics (LIPIcs), 142, 27, 2019-09-03. (more) (download)


Imprint | Privacy Policy

Stay in the know with developments at IARAI

We can let you know if there’s any

updates from the Institute.
You can later also tailor your news feed to specific research areas or keywords (Privacy)

Log in with your credentials


Forgot your details?

Create Account